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ABSTRACT:   
A method is explored to assess the quality of road network data based on image information in a reliable and accurate way.  
Therefore, the quality of the image information resulting from a ridge extraction procedure is characterized in terms of detection rate.  
The optimal parameter set for the ridge extraction is predicted based on typical road samples extracted from the image, resulting in 
an optimal performance of the road detection.  In the field of geography, an accuracy assessment method, called buffer-overlay-
statistics, is known to assess the spatial quality of a line data set by using another line data set of higher spatial accuracy.  Here, the 
method is adapted to assess the quality of a line data set based on image information rather than vector data.  The average 
displacement accuracy measure is redefined, such that it is able to take into account line detection errors (fragmentation and noise).  
Experiments were conducted on IKONOS panchromatic and Quickbird multispectral satellite images.   
 

1. INTRODUCTION 

Within the field of geographic information systems, a major 
challenge is the continuous assessment and control of the 
quality of the spatial data. The rapid growing number of sources 
of geospatial data, ranging from high-resolution satellite and 
airborne sensors, GPS, and derivative geospatial products, 
poses severe problems for integrating data. This can be 
especially difficult in an urban or suburban context, where the 
density and variety of observed structures is very high. 

Content providers face the problem of continuously ensuring 
that the information they produce is reliable, accurate and up-
to-date. Integrity constraints are able to resolve certain issues in 
the data, like valid attribute values or relationships between data 
objects. The main issue is however the consistency of the data 
with respect to the current "real-world" situation. Part of this 
problem is handled using image interpretation from aerial 
photos and very-high-resolution satellite images. Although this 
is still mainly a manual process performed by human operators, 
automated detection of change and anomalies in the existing 
databases using image information can form an essential tool to 
support quality control and maintenance of spatial information. 

There are several standards for spatial data quality at the 
national, regional and international levels (FGDC, 1995; 
ASPRS, 1990; ISO, 1999). In view of that, components of the 
quality of spatial data are defined, which include positional 
accuracy, attribute accuracy, logical consistency, completeness, 
and lineage. Since the positional accuracy component and the 
completeness are the most related components to this study, the 
other three components of the spatial data quality are introduced 
shortly first.  Attribute accuracy, the second component of 
quality of spatial data addresses the quality of the characteristics 
of spatial data and how well that matches reality. Logical 
consistency is defined as the fidelity of relationships described 
by the data structure. The lineage of a database includes 
reference to source materials, data collection procedures, and 
pre-processing including geometric transformations applied to 
the spatial data.   Completeness refers to mapping rules applied 
in equal way to all data and is sometimes referred to as 

exhaustiveness. It identifies gaps in the data progression and 
indicates whether missing values have been encountered. 

The Spatial Data Transfer Standard (SDTS) identifies four 
methods for assessing the positional accuracy of a digital 
dataset.  These include deductive estimate, internal evidence, 
comparison to source and comparison to independent source of 
higher accuracy.  Deductive estimate is the practical estimate of 
errors in the source of spatial data including the assumptions 
made about error propagation.  Internal evidence refers to all 
possible statistics or adjustments that may be used on the spatial 
data. Comparison to the source means comparing the derived 
spatial data with the original source.  Among these spatial data 
quality standards, it is noticed that they all pointed out that 
comparison to an independent source of higher accuracy is the 
preferred method for assessing positional accuracy of a digital 
dataset (USGS, 1999).  

While standard practice still relies on comparing control points, 
current applications put stricter demands on shape fidelity and 
relative accuracy. This means that the positional and the 
geometrical quality of their representations should not depend 
only on the individual points, which are part of its 
representation, but on the interrelationships and precise portrait 
of all these points.  In the literature, there is little published on 
how one can verify the shape of a linear data set (e.g. a road 
network data set) by another set (of higher accuracy).  Ramirez 
(2000) introduced four positional quality measures to express 
the similarity between two line presentations: the generalization 
factor, the distortion factor, the bias factor and the fuzziness 
factor.  The first three quality measures basically use the 
segment lengths measured along the two corresponding line 
representations to express in some way their resemblance.  The 
last measure uses only the end points of the two line 
representations.   Another approach for the assessment of 
positional quality of linear features of particular interest can be 
found in (Goodchild and Hunter, 1997) and (Tveite and 
Langaas, 1999).  The two approaches use a buffer overlay 
concept.  The two lines both get a buffer at distance r. By 
comparing the area of the different zones, one is able to 
calculate the average displacement, the oscillation of the lines 
and an indication of the spatial bias.  These quality measures are 



 

based on statistics, relatively insensitive to outliers and do not 

require matching of points between representations. 

Figure 1:  Left: Ridge detection result in satellite image.  
Right: Corresponding road vector data 

 

However, the main question that is addressed here, is how a 
system for quality assessment can make optimal use of image 
derived information, which inherently is inaccurate and 
incomplete. The quality measures in the literature are devised to 
compare vector data and do not take into account the errors that 
can occur in image derived information. In our work, we 
explore what statements can be made to compare image and 
vector information.  Because it is difficult to guarantee 
consistent quality of image information on an object level, we 
focus on making reliable statements on a region level.  

By characterizing the properties of regions, quality can be 
described in a statistical sense instead of using a comparison of 
individual objects. While this somehow relaxes the demand for 
a complete image description, it still remains vital to 
characterize the detection in terms of accuracy and 
completeness. Fig. 1 shows a comparison between image and 
vector information. Shadow, occlusion and variety in 
appearance all give rise to a fragmented and imprecise 
description of the image content. For a statistic like BOS to 
make sense, the performance of the detection needs to be 
quantified (i.e. spatial accuracy, number of false segments, 
mean true and false segment length). Without such a 
performance characterization it becomes difficult to map the 
reliability of quality measures. 

In next section, we describe the ridge extraction for road 
detection. Section 3 gives details on the methodology for 
characterizing the performance based on error propagation.   
Section 4 deals with the quality assessment of road vector data, 
based on image information.  Section 5 shows experimental 
results performed on very-high-resolution satellite images. 
Section 6 concludes the paper with a brief discussion. 

 

2. RIDGE DETECTION 

If we look at the intensity image as a terrain model, lines can be 
identified as narrow valleys in the intensity image. In (Steger, 
1998), different approaches to line detection are reviewed. In 
this work, line detection is performed based on polynomial 
interpolation to determine pixels belonging to road structures in 
the image, the ”facet model” (Haralick, 1983).  This is a 
standard method for ridge detection. The image is regarded as a 
function I(i, j). Lines are detected as ridges and ravines in this 
function by locally approximating the image function by its 
second order Taylor polynomial.  The polynomial is used to 
approximate first and second order derivatives of the image 
function in each pixel. The direction of the line can be 
determined from the Hessian matrix of the Taylor polynomial. 

The gradient and curvature information in each pixel are used to 
classify a pixel in a number of topological classes based on their 
sign or magnitude. Line points are mainly characterized by a 
high second directional derivative, i.e. a high curvature 
perpendicular to the line direction.  The calculation of the 
partial derivatives can be done in various ways. The facet model 
determines a least squares fit of a polynomial F to the image 
data I over a window of size N = w2 with window size w. The 
origin is chosen in the central pixel of the window. The value of 
the polynomial F in pixel (i, j) is given by: 
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The facet model searches the least-squares solution �, given the 
image data x containing the intensity value I(i, j) in each pixel 
(i, j): 
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This leads to the linear system MTM� = MTx with the solution 
�0 given by �0 = (MTM)−1MTx.  The matrix M is independent of 
the position of the window within the image, meaning that the 
calculation of (MTM)−1MT needs to be performed only once for 
the processing of an image with a fixed window size w. On the 
basis of the parameters � of the interpolated surface F, the 
gradient and Hessian in a certain pixel can be calculated.  In our 
model we are only interested in the gradient and the Hessian in 
the central pixel of the window (i.e. i=j=0) 
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3. ERROR ANALYSIS 

We wish to give a more quantitative analysis of the performance 
of ridge detection. More specifically, we wish to be able to 
predict the performance of the detector for a given dataset and 
the according parameter set that gives optimal results. For this, 
we analyze the influence that perturbations on the intensity 
values have on the estimation of the parameters by using error 
propagation (Haralick, 1996).  Additive random perturbations 

 

  

 



 

are assumed on the input x and the perturbations are described 
by the covariance matrix �x. The propagation of the error on the 
input x to the estimated parameters � is given by: 
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The matrix (MTM)−1MT can be worked out to a closed 
expression.  Due to the linear system, the error propagation of x 
on � is only dependent on the window size w and not on the 
input intensity values (and consequently independent of the 
observed perturbed image structure).  For uncorrelated noise 
with variance �2, Eq.(4) simplifies to �∆θ = �2(MTM)−1 since in 
this case �∆x = �2I.  However, in this work, the general case is 
followed. 

The parameter covariance matrix �∆θ  allows estimating the 
variance on the detected gradient and curvature of the ridge 
detector. The gradient magnitude and eigenvalues of the 
Hessian are given by: 
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The variance on these measurements up to the first order is 
given by 
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In combination with Eq.(4), this gives the relation between the 
perturbations on the image data and the perturbations on the 
detection measurements G and �1. This relation allows 
estimating the expected performance of the detector for a given 
parameter set in terms of detection rate. The basic ridge detector 
operates by setting a threshold t1 on the first eigenvalue �1 of the 
Hessian. Pixels that exceed this threshold are selected as ridge 
pixels. To predict the performance of the detector, the 
eigenvalue �1 is regarded as a stochastic variable using a 
Gaussian distribution with variance ��1 . The probability p(�1>t1) 
expresses when the curvature �1 of a pixel exceeds t1. This 
distribution is given by the survival function (i.e. the 
complement of the cumulative density function) of the 
Gaussian: 

( )
2

1 1
2
1

11

1

( )

2
1 1 1

1 11
2

1
2

1
2

t

p t e d

er f

λ

λ λ
σ

λ

λ

λ λ
σ π

λ λ
σ

−∞ −

> =

� �� 	−
� �
 �= −


 �� �� �� �


       (7) 

 
Given the survival function, calculated with the appropriate 
statistics for the road, a prediction of the detection performance 
can be made in terms of true positive and false negative 
detection. In addition, if statistics for the noise structures in the 
surroundings of a road (e.g. buildings, trees) are measured, a 

prediction of the false positive and true negative detection can 
be made. 

4. QUALITY ASSESSMENT 

When digitizing features, one always introduces uncertainty on 
the spatial accuracy of the digitized representation because of 
problems with measuring methods, frames of geodetic reference 
and feature definitions.  In order to assess the positional 
accuracy of a feature’s digital representation, one can compare 
it’s location with one derived from a source with higher 
accuracy.  It is assumed that the accuracy of the reference 
source is sufficiently high, such that the difference between it 
and the truth can be ignored.  The comparison results in some 
quality metrics, which are property of the tested source only.  
Here, we focus on the quantification of the geometric accuracy 
of lines.  Based on the definition given by the vector based 
buffer-overlay-statistics (BOS) method, a displacement 
accuracy measure will be defined expressing the deviation of 
the road vector data from the road information extracted out of a 
satellite image.  

 

Figure 2: The buffer overlay statistics method 
 

4.1 Buffer-overlay-statistics method 

The method uses two independent line data sets, X and Q, 
representing the road vector data of the same roads in the same 
area.  The geometric accuracy of Q should be better than the 
expected geometric accuracy of the vector data X.  This method, 
described in (Goodchild and Hunter, 1997) and (Tveite and 
Langaas, 1999) use a buffer overlay concept to compare the two 
data sets.  It differs from other methods, such as (Ramirez, 
2000), in that it is based on statistics and doesn’t need a 
correspondence between the two linear representations.  In this 
method, the two lines both get a buffer at distance r, see Fig 2. 
By comparing the area of the different zones (e.g. inside both 
QB and XB, inside QB outside XB,), one is able to assess the 
average displacement, the oscillation of the lines and to 
calculate an indication of the spatial bias.   

 

 

Figure 3. Vector based BOS becomes Image based BOS 
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Fig. 3 shows how the iterative BOS method is applied.  To 
construct the graph on the right, the average displacement is 
calculated for each buffer size around the vector data X and Q, 
according to the equation Eq. (8).  The graph must be expected 
to increase steadily with increasing buffer size until it reaches 
the average displacement of the line data set, then the graph 
should start to flatten out.  The shape of the graph therefore 
gives an indication of the average displacement.  

There are a few remarks to this approach.  First, the results are 
reported in the form of a table or graph, which is difficult to 
interpret or to handle because there is no quantitative 
expression of the quality available which could be used in 
further decision making.  Next, the buffer overlay technique 
requires a complete representation of the linear features in both 
data sets. Here, a quality assessment of road vector data is 
performed using image information, which is the result of a 
ridge extraction procedure, containing a certain degree of 
fragmentation.  Next to this fragmentation, noise will be present 
and should be, together with the fragmentation, accounted for 
when constructing the quality measures.  In Fig 4, we see an 
example of such a road extraction result, which will be used as 
the reference source.  But instead of one line with higher 
accuracy, we have a fragmented line and noise structures due to 
imperfect road extraction. 

 
 

 

 

 

 

 

 

 

Figure 4: Ridge extraction result and buffered vector data in 
overlay 

 

Due to this fragmentation and noise, the same process cannot be 
used anymore for assessing the average displacement.  In Eq. 
(8), the noise adds to the value of QB resulting in a bad 
assessment of the average displacement. 

4.2 New approach 

Based on previous remarks, we propose a new quality measure 
which takes into account these shortcomings.  Our goal is to 
construct a measure which indicates how much the road 
location described by the vector data deviates from the ‘real 
world’ situation which is represented by the image information.  
Fig. 4 shows us a ridge extraction result used as reference 
source to verify the road vector data.  

The method is an iterative process with increasing buffer size, 
consisting out of the following steps: 

• Create a buffer RB of size r around the road vector 
R. 

• Calculate the overlap area O between the buffered 
vector data RB and the road detection data D. 

• Subtract the previous (smaller) buffer size overlap 
area from O 

• Normalize the result by dividing this difference by 
the increase in area of the buffer RB 

 

This procedure translates in the normalized differential overlap 
area F(r): 
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A result of this calculation is given in Fig 5.  To interpret this 
figure, we make a prediction of the expected noise level and 
detection rate based on a typical road sample, see 5.1.  We can 
now distinguish three regions in the figure: 

• The upper region from one to the predicted signal 
level:  due to incompleteness of the ridge detection 
the graph F(r) will never rise above the predicted 
signal level. 

• The middle region from the maximum signal level to 
the predicted noise level: a fraction of the value of 
F(r) is a result from overlap with road signal 

• The lower region under the noise level: from this 
threshold we cannot know whether the value of F(r) is 
due to noise or to road signal, and must be 
disregarded. 

The dark line represents the ideal case of a road vector perfectly 
corresponding to the middle of the road in the image.  For all 
buffer sizes smaller than the width of the road in the image, the 
normalized differential overlap area F(r) is expected to be the 
predicted detection performance.  When the buffer exceeds the 
road width, F(r) will fall back to the predicted noise level.  The 
graph in light gray shows the case of a small shift between the 
location of the road in the test source and the reference source.  
The graph will now be characterized by some intervals located 
above the noise level, which indicates overlap with road signal 
at a distance r.  This distance will be an underestimation of the 
true distance because only the shortest path between the two 
road representations is considered using these buffers. 

 

        

Figure 5: F(r) in relation to the buffer size. Black: Ideal case.  
Gray: Typical example 

 
 
Based on this interpretation of the figure, we define the average 
displacement of the road vector data as the average buffer 
length of the gray filled region in Fig 5, which translates to: 
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5. EXPERIMENTS 

To test the method in practice, we apply the expressions derived 
in the previous sections.  First we’ll take a look at the 
performance of the road extraction then the optimal 
performance will be derived, and finally a quality assessment of 
the linear spatial data set is conducted using the adapted BOS.  
The experiments presented here, were conducted on zones of an 
IKONOS panchromatic and a Quickbird multispectral satellite 
image, displaying the city of Ghent, Belgium.  A number of 
small image subsets have been selected containing straight 
examples of typical roads. These subsets have been manually 
rotated until each road is positioned parallel to the vertical axis. 
Fig. 6 shows the selected image subsets referenced R1 to R5. 

 
 

 

      (a) R1   (b) R2           (c) R3    (d) R4          (e) R5 

 
Figure 6:  Road data subset 

 
 
5.1 Performance characterization 

The position xroad of the central axis of the road is used to 
measure the covariance matrix Σx and the mean curvature E[λ1], 
by sampling x and λ1 for a given window size w.  Using Eq. (7) 
we can make a prediction of the expected detection rate for that 
type of road.  This equation gives rise to a distribution that only 
gives information about the useful signal, i.e. the road that 
needs to be detected. This gives an upper bound to the threshold 
t1. A lower bound is defined by the properties of the noise, i.e. 
undesired structures in the image which are falsely detected.  If 
the threshold is chosen too low, the detection of these false 
negatives will increase. The performance of the detection for 
each threshold can be summarized in a Receiver Operating 
Characteristic (ROC) curve. Sensitivity and specificity are 
defined as follows: 

length road
pixels road detected

ysensitivit =
+

=
FPTP

TP  

length noise
pixels noise detected

1yspecificit −=
+

=
FPTP

TN   (11) 

 

where {TP, TN,FN, FP} stands for true positive etc.  True 
positives and false negatives are measured on the road where x 
is x = xroad and are normalized using the total road length in the 
image. True negatives and false positives are measured along a 
vertical axis x = xnoise representative for the noisy structures in 
the vicinity of the road.  The position of this axis is determined 
automatically by taking the position of the second largest peak 
in the mean curvature profile of the road and its vicinity. 
Normalisation is performed using the total length of the axis, 
which in this case equals the total road length. Fig. 9a illustrates 
the position x = xroad and x = xnoise for road type R1.  The reason 
for this approach is that it can be meaningful to characterize 
false detections in the direct surroundings of a road. Since for 
some applications a rough registration between image and GIS 
data is known, regions-of-interest can be defined where roads 
are expected in the image.  Road detection in this case should 
then be aimed at distinguishing the useful signal from noise in 
the immediate surroundings. In our example we measure the 
noise statistics of the structures beside the road and use this to 
model the expected falsely detected noise pixels using Eq.(7). In 
this case Σx and E[λ1] are measured for x = xnoise for the same 
window size w as the signal.  Using the ROC curve, the optimal 
performance for this curve is defined as the point on the curve 
closest to the upper right corner (1, 1). The upper right corner is 
equivalent to a road which is completely detected with no 
detection of noisy structures (i.e. perfect detection). The point 
on the curve closest to perfect detection defines the optimal 
threshold t1 for the given window size. In Fig. 7, the empirical 
and predicted ROC curves for road type R1 are plotted for 
window size w = 11 and w = 13. The full curve shows the 
empirical plot, where detected and falsely detected road pixels 
have been measured on the road axis and the position xnoise. The 
dashed curve shows the predicted plot using the covariance 
matrices measured in these positions. The sample point closest 
to the upper right corner defines the optimal threshold for each 
window size. The difference between the empirical and 
predicted ROC curve for a given window size is mainly due to a 
less accurate estimation of the true noise survival function. 
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Figure 7: Empirical and predicted ROC curves for road type 
R1 for window size w = 11 and w = 13. The empirical and 
predicted point of optimal performance are marked by the 
arrows. 
 
5.2 GIS quality assessment 

To test the image based displacement quality measure, we 
applied the proposed methodology to a Quickbird test zone, 
displaying a suburban part of Ghent, shown in Fig. 1.  The 
results of the new (image-based) displacement measure are 



 

compared to the results of the vector based displacement 
measure in the following way: 

• A road network database R is manually plotted over 
the image, which defines our ground truth with high 
spatial accuracy.  

• A typical road sample is used to predict the road 
extraction performance for a certain parameter set of 
the ridge detection. 

• The road network database R is shifted D pixels in a 
chosen direction.  This results in a shifted database S. 

• We calculate the average displacement D1 as defined 
by Tveite and Langaas, using the two vector 
databases R and S. 

• We calculate the average displacement D2 as 
described in previous section, using the image 
information and the vector database S. 

• The same procedure is repeated several times with 
increasing D.   

In Fig. 8, we see the result of the calculations of D1 and D2 for a 
shift going from 0 to 120m.  The image based method seems to 
give a good approximation of the corresponding vector based 
displacement.  Although for small shifts, we see a clear 
overestimation due to the thickness of the detected roads.  The 
method was applied to image information resulting from ridge 
detection with different parameter settings.  From Fig. 8, we 
conclude that the image based displacement measure doesn’t 
depend much from the detection parameters for road extraction. 
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Figure 8: D1 compared to D2 for two different parameter 
settings 

 
It is clear that some shortcomings of the vector based BOS will 
remain in the image based method.  Hence, there is always an 
underestimation of the displacement compared to the true 
displacement.  The underestimation can be explained by 
considering a shift of the vector data along the direction of the 
corresponding road in the image.  In that case no mentionable 
displacement will be detected using buffer overlay statistics.  
Finally, only the shortest distance between road vector data and 
image data is considered using this technique. Both factors 
result in an underestimation of the actual shift. 
 

6. CONCLUSION 

Whereas in other research the main focus is on data production, 
in this paper we focus on how image information can be used to 
assess the quality of an already existing road vector data base.  
In the literature, only few techniques are presented to verify a 
linear vector data set by comparing with another.  Using buffer 
overlay statistics, we can make some quality statements about 
the tested road vector data without the need of finding an exact 
correspondence between the tested source and the reference 
source.  But the need for a complete representation of the road 
vector data is a disadvantage when using image information, 

because the ridge detection result is inherently bound to 
fragmentation and miscoding.   Therefore, we propose a 
framework which sets up the optimal parameters for the ridge 
detection and makes a prediction about the fragmentation and 
the noise in the detection result.  Based on these predictions, a 
displacement quality measure is defined which quantitatively 
expresses the displacement of the tested source compared to the 
image source. 
 

 
 (a)    (b)            (c) 

 
Figure 9: Detected result on road type R1 using optimal 
parameter settings. The original image shows the position x 
= xroad and x = xnoise.  (a) original (b) predicted (c) empirical 
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